先进成像

激光与光电子学进展

基于颈动脉超声血管的特征提取算法

孙国栋,石蕴玉*,刘翔

上海工程技术大学电子电气工程学院,上海 201620

摘要 随着医学影像的快速升级和人工智能的飞速发展,智慧医疗已成为医学研究领域的一大热点。超声影像技术在临床诊断中有着广泛应用,但大多数血管提取算法是手动或半自动的,提取结果有很强的主观性和易错性。基于此,本研究从颈动脉本身特性出发,采用多尺度Hessian协同滤波方法进行预处理,随后结合医学先验知识提取血管感兴趣区域(ROI),设计了一种遍历追踪搜索算法来检测血管,借助像素灰度差值分级来自动获取颈动脉血管壁,提取的准确率可达89.3%。本研究不仅可以减轻医生的负担,也可降低由于医生的主观性诊断所带来的误诊率,使医生能很好地对血管形态特征参数进行定量定性分析,从而使得临床诊断更加客观与准确。

关键词 医用光学;多尺度滤波;Hessian矩阵;血管特征提取;遍历搜索 中图分类号 TP391 文献标志码 A

doi: 10.3788/LOP202259.1017002

Feature Extraction Algorithm Based on Carotid Artery Ultrasound Vessels

Sun Guodong, Shi Yunyu^{*}, Liu Xiang

School of Electrical and Electronic Engineering, Shanghai University of Engineering Science, Shanghai 201620, China

Abstract With the rapid advancement of medical imaging technology and the rapid development in artificial intelligence, intelligent medicine has emerged as a prominent focus of medical study. Although ultrasound imaging technology has many therapeutic uses, most vascular extraction techniques are manual or semiautomatic, and the extraction results are highly subjective and error-prone. For preprocessing carotid artery features, this work uses a multiscale Hessian filtering synergistic technique. It then uses medical prior knowledge to extract the region of interest (ROI) of blood vessels, creates a traversal tracking search algorithm to find blood vessels, and automatically extracts the carotid artery vessel wall using pixel grayscale difference grading. The extraction accuracy can reach 89.3%. This study can lessen the load on physicians, reduce the rate of misdiagnosis owing to subjective diagnosis and allow physicians to perform a quantitative and qualitative examination of vascular morphological features, making clinical diagnosis more objective and accurate.

Key words medical optics; multiscale filtering; Hessian matrix; vessel feature extraction; traversal search

通信作者: *yunyushi@sues.edu.cn

收稿日期: 2021-07-08; 修回日期: 2021-08-04; 录用日期: 2021-08-10

基金项目:上海市自然科学基金(19ZR1421500)、上海市科学技术委员会,医学引导类(中、西医)科技支撑项目 (18411970000)

1引言

近年来,血管疾病^[1]已成为致死率和致残率较高的疾病之一,给人们的健康带来了严重危害。超 声影像作为我国最为普及的医学成像技术,在疾病 分析和临床诊断中应用广泛。超声成像具有实时、 无辐射、操作简便和经济安全等优势,尤其适合于 对人体血管内血流动力学的观察与分析,现已成为 血管相关疾病早期筛查和诊断的首选方式。超声 成像的局限性^[2]主要有斑点噪声多、图像质量差和 分辨率低等。此外,成像技术极其依赖医生的手 法,采集和诊断的过程缺乏标准化,不同部位考虑 因素不同,这些缺陷都使得医生无法准确快速地手 动划分出血管区域,很难进行后续的特征描述分 析。而血管分割作为超声图像处理中的一项关键 技术,发挥着不可代替的作用,对超声影像血管的 定量定性分析来说非常关键。

颈动脉超声成像是人体各组织中比较清晰的 部位,血管腔是灰度为零的纯黑区域。通常,颈动 脉的内中膜厚度(IMT)越厚,心血管疾病的发病率 就越高^[3]。针对正常血管壁较亮的特点,对颈动脉 进行测量研究可对其发生疾病的风险进行评估,从 而进行有效预防和治疗,这在临床上具有重要的研 究意义。医学影像分割相比自然图像更加困难和 复杂。血管本身具有形状小且结构复杂、清晰度不 够和亮度不均匀等问题,这使得血管分割仍然是该 领域的一大难题。

在众多图像处理算法中,要根据超声图像实际 特点选择合适的滤波增强算法[4-5]。超声图像斑点[6] 是一种乘性噪声,服从伽马分布,主要采用非线性 滤波算法对其进行研究,如中值滤波算法、高斯平 滑滤波算法和小波变换算法等^[7-8]。Adam等^[9]提出 的基于扩散方程的各向异性滤波算法在超声图像 处理中效果比较好,得到了广泛的应用,在平滑噪 声的同时能够较好地保留图像细节、增强边缘信 息。李锵等^[10]提出了一种基于高斯滤波算法的双 边滤波模型,该模型可以对邻域内各相邻像素点或 体素点空间上的邻近关系和亮度相似性信息进行 非线性组合来实现滤波。血管在较暗的环境中呈 现出来的是明亮的管状结构, Frangi等^[11-12]使用多 尺度滤波来实现血管增强,将Hessian矩阵与有关 邻域像素和椭圆曲率等知识进行结合来描述并提 取血管。甘露等[13]充分利用血管组织是一种管状 的树形连通结构,噪声和血管组织在三维空间连通 性特征下有较大差异的性质来分离噪声和目标区 域。这些研究为颈动脉血管快速提取和识别提供 了依据。

早期血管分割方法对人工介入的依赖性削弱 了分割算法的泛化能力,基于此,本文提出了一种 基于遍历追踪搜索的血管提取算法。所提算法可 以辅助医生更加高效地工作,使得超声图像血管 提取变得更加精确。首先采用基于多尺度Hessian 矩阵Frangi滤波的算法对图像进行预处理,通过 提取感兴趣区域(ROI)来完成血管的粗提取;然 后利用遍历扫描搜索算法进行精细提取,采用像 素灰度差值分级思想来自动获取血管壁,对于初 步提取结果采用形态学闭运算进行优化,完成血 管的最终提取。

2 基于遍历追踪搜索的血管提取 算法

所提基于遍历追踪搜索的血管提取算法可视 化处理流程如图1所示。

2.1 超声图像预处理

所提算法选取多尺度 Hessian 矩阵滤波对图像进行预处理。抑制斑点噪声、保留并增强图像细

节^[14]是预处理的一个重要环节,该环节能够很好地 提高图像质量。血管整体呈树状结构,而单条血管 呈线性,这些特性决定了血管组织像素的提取需要 计算不同尺度下的梯度和 Hessian 矩阵。采用 Hessian矩阵对图像中的线性结构进行增强,滤去点 状的结构,能够有效排除噪声干扰,且计算速度快, 是一种有效的方法。多尺度 Hessian 矩阵滤波^[15-17] 主要通过计算图像多个尺度上各像素点的Hessian 矩阵,由矩阵特征值来构建相似性函数提取血管相 关特征,最后对多个尺度矩阵特征进行融合,实现 血管提取。为得到准确的提取结果,可将二值化处 理与形态学处理^[18]结合起来进一步排除纹理等噪 声的干扰。Hessian矩阵^[19]是由图像在各个像素点 的二阶偏导数构成的,具体可表示为原图与高斯模 板函数的二次偏导数的卷积,反映各像素点处的局 部灰度几何信息。

$$\boldsymbol{H}(x,y) = \begin{bmatrix} I_{xx} & I_{xy} \\ I_{xy} & I_{yy} \end{bmatrix} = \begin{bmatrix} \frac{\partial^2 g(x,y)}{\partial x^2} & \frac{\partial^2 g(x,y)}{\partial x \partial y} \\ \frac{\partial^2 g(x,y)}{\partial x \partial y} & \frac{\partial^2 g(x,y)}{\partial y^2} \end{bmatrix} \otimes \boldsymbol{I}, \quad (1)$$

式中:x,y表示平滑后的超声图像对应的矩阵坐标; **H**为曲面的曲率;平滑后的灰度图像记作 $I;I_{xx},I_{xy}$ 、 I_{yy} 分别为高斯函数的二阶偏导数 $\frac{\partial^2 g(x,y)}{\partial x^2}$ 、 $\frac{\partial^2 g(x,y)}{\partial x \partial y}$ 、 $\frac{\partial^2 g(x,y)}{\partial y^2}$ 与I进行卷积的结果。通过 (1)式可以求得 Hessian矩阵的两个特征值和特征 向量,因为图像中某一像素点的Hessian矩阵特征 值和其对应的特征向量决定了该像素点所在领域 内的几何结构,如表1所示,所以由此可对图像中不 同特征区域所具有的结构特性进行描述^[20]。假定 Hessian两个特征值为 λ_1 和 λ_2 ,且 $|\lambda_1| < |\lambda_2|$,那么 λ_2 所对应的特征向量对应其领域内二维曲线最大曲 率的方向,即为陡峭的方向;反之 λ_1 为平缓的 方向。

根据 Hessian 矩阵特征值,定义颈动脉超声血 管图像中的相似性系数。

表1 Hessian矩阵对应图像特征表 Table 1 Hessian matrix corresponding to image feature table

λ_1	λ_2	Image Feature
L	-H	Vessel wall (brightness)
L	+H	Bureaucratic blood (darkness)

$$\rho(x,y) = \begin{cases} 0, & \lambda_2 > 0\\ 1 - \exp\left[-\left(aR^2 + \beta S^2\right)\right], & \lambda_2 \leqslant 0 \end{cases}, (2) \\ \begin{cases} R = \left(\frac{\lambda_2}{\lambda_1}\right)^2 \\ S = \sqrt{\lambda_1^2 + \lambda_2^2} \end{cases}$$
(3)

当目标区域为明亮的血管壁时, $\lambda_2 = -H \pm R$ 与 S 较大, $\rho(x,y)$ 的值也就更大,最后取 max [$\rho(x,y)$]作为最终的线性增强输出图像。实验结果表明,双边滤波和中值滤波达不到所采用的 Frangi算法的效果,如图2所示,其中图2(a)为原始 图像,图2(b)为双边滤波后的图像,图2(c)为中值 滤波后的图像,图2(d)为所采用的基于多尺度 Hessian矩阵的Frangi算法滤波后的图像。从图中 可以看出,采用Hessian矩阵对图像中的线性结构 进行增强,滤去点状的结构,能够有效排除噪声干 扰,可以更清晰地凸显血管区域,降低了后续提取 血管的复杂度,能较明显地将血管与周围组织区分 开来。

图 2 图像滤波效果对比。(a)原始图像;(b)双边滤波后图 像;(c)中值滤波后图像;(d)Frangi滤波后图像

Fig. 2 Comparison of image filtering effect. (a) Original image; (b) bilateral filtered image; (c) median filtered image; (d) Frangi filtered image

2.2 基于感兴趣区域的粗略提取

血管的定位和提取^[21]是描述分析其形态特征参数的关键,对于后续纹理特征量化、组织区域信息获取和图像数据处理等研究有着重要的意义。颈动脉

血管区域是灰度为零的纯黑色区域,非血管区域是 斑点噪声比较严重的背景区。实际分割过程中,血 管^[22]只占整个图像的小部分区域,影像的其余部分 只会对分割的精度和速度产生干扰。故分割前要先 基于医学先验知识^[23]对血管的ROI进行设定。

2.3 基于遍历追踪搜索的精细提取

图像边缘包括了目标区域重要信息,边缘处像 素灰度变化幅度较大。阈值法可以把图像中感兴 趣目标与图像背景分离。李国宽等^[24]指出,血管中 血液显示低回声时,血管部分显示高回声。根据某 一设定阈值可以区分血液和血管,血液区域像素值 为0,表现为纯黑区域;血管所在区域像素值为255, 表现为白色区域。所提遍历追踪搜索提取算法基 于医学先验知识,从获取的血管ROI图像中心点出 发,依次搜索并旋转扫描整个ROI区域,逐步检测 出整个血管壁的边界。因为噪声离散分布在血管 内,而血管具有连通特性,通过像素值及血管的连 通特性即可完成提取。根据灰度分级的思想,将像 素值大于0的非血液区域像素值全部映射到255变 为白色,从而血液区域表现为全黑色。个别血液区 域或许会有类似白点的现象,考虑是预处理时的残 留噪声,可通过形态学操作对结果进行优化。

3 实验结果与分析

3.1 实验环境与数据集

实验环境为搭载AMD Ryzen Threadripper 1900X 8-Core Processor 3.80 GHz CPU, 32 GB内存, Windows 10操作系统的计算机。实验使用的部分数据由上海市奉贤区中心医院提供, 拍摄仪器为超声诊断仪(型号 GE Vivid E9), 配备9L-D探头, 探头频率为4~8 MHz, 该数据集共包含34位患者的颈动脉超声图像, 共有68张。部分数据采 用塞浦路斯神经研究院的公开数据集^[25], 拍摄仪器为超声诊断仪(型号 ATL HDI-3000), 探头频率 为4~7 MHz, 该数据集共包含来自不同测试者的 79张超声图像, 测试者年龄段分布为26~95岁, 平均年龄为54岁。

3.2 实验结果

首先,对数据进行标准化处理。原始超声图像 中包含图像拍摄参数、拍摄日期、病人信息等无关 内容,需对其依据尺寸进行自动裁剪,只保留拍摄 的颈动脉血管信息,如图3所示。

图3 超声图像标准化处理。(a)处理前;(b)处理后

Fig. 3 Ultrasound image standardization processing. (a) Before processing; (b) after processing

3.3 结果分析

其次,对图像进行多尺度 Hessian 矩阵滤波预 处理。随后,对血管进行提取。遍历搜索时,旋转 扫描的优势在于能够更好地排除噪声的干扰。根 据周围像素点的分布来设定合适阈值,利用跳变的 思想来识别并检测血管,对于初步的提取结果,利 用局部差异性对一些错误点进行剔除,完成血管提 取。最后,对提取结果进行优化。提取到的血管可 能会出现个别小洞或断连现象,采用形态学闭运算 并结合医学先验知识来对结果进行优化处理。具 体实验结果如图4所示。

采用查全率(recall)和查准率(precision)^[26]来衡量血管提取算法的有效性,表达式分别为

$$R_{\text{precision}} = \frac{N_{\text{TP}}}{N_{\text{TP}} + N_{\text{FP}}},$$
(5)

$$R_{\text{recall}} = \frac{N_{\text{TP}}}{N_{\text{TP}} + N_{\text{FN}}},\tag{6}$$

式中:图像中的每个像素标记为目标或背景,通过 与医学真实值图像比较,可归结为真阳性(TP)、假 阳性(FP)、真阴性(TN)和假阴性(FN)4种类型, N_{TP}、N_{FP}、N_{TN}、N_{FN}分别为4种类型的数量。混淆矩

第 59 卷 第 10 期/2022 年 5 月/激光与光电子学进展

图 4 实验结果 Fig. 4 Experiment results

阵^[27]如表2所示。为了定量地评价血管提取结果的 好坏,对不同来源数据集的颈动脉血管提取结果分 别进行了查全率和查准率的统计,统计结果如表3 所示。

表 2 混淆矩阵 Table 2 Confusion matrix

Declaimation	Predicted result		
Real situation	Positive sample	Negative sample	
Positive sample	ТР	FN	
Negative sample	FP	TN	

由表3可知,所提算法取得了一定的效果,查全 率和查准率分别达到了81.3%、89.3%。在有关超 声血管区域性分割的工作基础之上,所提算法能有 效地将血管区域的边缘提取出来,这更有利于后续 对血管形态特征模型的描述,后续工作是为找到与 医学先验模型描述不一致的血管,即临床上发生病 变的血管部位,这可以有效提高其在临床上的实用 性,对相关血管疾病的早期治疗会产生更好的 效果。

表 3 血管提取结果统计 Table 3 Statistics of blood vessel extraction results

Detect course	Number of	Recall /	Precision /
Dataset source	samples	%	%
Shanghai Fengxian	68	80.6	89.3
District Central Hospital			
Cyprus Neurological	70	81.9	89.4
Institute	19		
Total	147	81.3	89.3

4 结 论

所提算法首先对超声图像进行多尺度 Hessian 矩阵滤波的预处理来提高超声图像的质量,其次进 行 ROI 粗提取,最后进行精细提取并采用形态学闭 运算优化提取结果,来实现血管的高效精准提取。 实验结果表明,所提算法具有高效性和鲁棒性。所 采取的思路与方法极大地弱化了超声图像中的噪 声和杂质,突出血管的边缘与细节信息,适用于绝 大多数医学图像的处理。

研究论文

超声作为一种简单快捷的诊断方式,未来具有 很好的发展前景。对于医学超声影像这种缺乏大 数据支撑的应用场景来讲,传统经典图像处理算法 仍然是一种比较务实可行的路径,同时也不能否定 深度学习的强大,将传统算法与深度学习结合起来 是一个很好的方向;智慧医疗的迅速发展为医生诊 断提供了大量的影像学信息,如何在保证分割质量 的同时提高分割效率也是值得关注的问题;超声血 管提取的最终目的是辅助医生更好地进行临床诊 断,如何把医学知识和血管提取算法进行一个紧密 结合是极其重要的。这些对于临床而言具有深远 的社会意义和重要的应用价值。

参考文献

 Zhang H, Zhang H L, Liang H F, et al. Application analysis of the carotid artery ultrasound in carotid artery disease in patients with cerebral infarction and hypertension[J]. Clinical Research and Practice, 2017, 2(8): 3-5.
 张换,张惠丽,梁华峰,等.颈动脉超声在脑梗死与

高血压患者颈部血管病变中的应用分析[J]. 临床医 学研究与实践, 2017, 2(8): 3-5.

- [2] Zhai Y X, Liu X, Song J L, et al. Progresses of computer-aided diagnosis of liver fibrosis based on ultrasonography[J]. Chinese Journal of Medical Imaging Technology, 2019, 35(7): 1107-1110.
 翟岳仙,刘翔,宋家琳,等.基于超声的计算机辅助 诊断肝纤维化研究进展[J].中国医学影像技术, 2019, 35(7): 1107-1110.
- [3] Gao X Q, Li L. Ultrasound assessment of carotid atherosclerotic plaque stability[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2017, 14 (9): 660-663.
 高晓倩,李荔.超声评估颈动脉粥样硬化斑块稳定性

的方法[J]. 中华医学超声杂志(电子版), 2017, 14(9): 660-663.

- [4] Malarvezhi P, Kumar R. A diversity enhanced particle filter for carrier frequency offset estimation in nonlinear OFDM system[J]. Wireless Personal Communications, 2016, 89(1): 15-26.
- [5] Zhang W, Lü X Q, Wu L, et al. Advances in classification technology based on typical medical images[J]. Laser & Optoelectronics Progress, 2018, 55(12): 120007.

张薇,吕晓琪,吴凉,等.基于典型医学图像的分类 技术研究进展[J].激光与光电子学进展,2018,55 (12):120007.

第 59 卷 第 10 期/2022 年 5 月/激光与光电子学进展

- [6] Zhang M, Lü X Q, Wu L, et al. Multiplicative denoising method based on deep residual learning[J]. Laser & Optoelectronics Progress, 2018, 55(3): 031004.
 张明,吕晓琪,吴凉,等.基于深度残差学习的乘性 噪声去噪方法[J]. 激光与光电子学进展, 2018, 55 (3): 031004.
- [7] Khatami A, Khosravi A, Nguyen T, et al. Medical image analysis using wavelet transform and deep belief networks[J]. Expert Systems With Applications, 2017, 86: 190-198.
- [8] Yan C F, Li D Y, Lin J L, et al. Review of nonlinear filters for medical ultrasonic images[J]. Journal of Biomedical Engineering, 2006, 23(5): 1123-1125, 1133.
 严朝福,李德玉,林江莉,等.超声医学图像非线性 滤波算法研究进展[J]. 生物医学工程学杂志, 2006, 23(5): 1123-1125, 1133.
- [9] Adam D, Beilin-Nissan S, Friedman Z, et al. The combined effect of spatial compounding and nonlinear filtering on the speckle reduction in ultrasound images [J]. Ultrasonics, 2006, 44(2): 166-181.
- [10] Li Q, Zhang Q J, Guan X, et al. Segmentation of carotid intima media in ultrasound images using improved fuzzy C means algorithm[J]. Journal of Tianjin University (Science and Technology), 2018, 51(1): 95-102.
 李锵,张琦珺,关欣,等.基于改进模糊C均值算法 的颈动脉超声图像分割[J]. 天津大学学报(自然科学)
- [11] Frangi A F, Niessen W J, Vincken K L, et al. Multiscale vessel enhancement filtering[M]//Wells W M, Colchester A, Delp S. Medical image computing and computer-assisted intervention-MICCAI'98. Lecture notes in computer science. Heidelberg: Springer, 1998, 1496: 130-137.

与工程技术版), 2018, 51(1): 95-102.

- [12] Wang J, Sun H T, Jiang Z, et al. Pavement crack detection based on Hessian matrix multiscale filtering
 [J]. Journal of Computer Applications, 2016, 36(S1):
 174-176, 183.
 王军,孙慧婷,姜志,等.基于Hessian矩阵多尺度
 滤波的路面裂缝图像检测方法[J]. 计算机应用, 2016, 36(S1): 174-176, 183.
- [13] Gan L, Zhang Q L, Liu X, et al. Liver vessel segmentation using 3D connectivity features[J]. Microcomputer Applications, 2015, 31(9): 1-4. 甘露,张秋路,刘翔,等.基于三维连通性特征的肝脏血管超声图像分割方法[J]. 微型电脑应用, 2015, 31(9): 1-4.

- [14] Zhang M L, Desrosiers C. Image denoising based on sparse representation and gradient histogram[J]. IET Image Processing, 2017, 11(1): 54-63.
- [15] Li X L, Zeng S G, Zheng S, et al. Surface crack detection of ceramic tile based on sliding filter and automatic region growth[J]. Laser & Optoelectronics Progress, 2019, 56(21): 211003.
 李小磊,曾曙光,郑胜,等.基于滑动滤波和自动区域生长的陶瓷瓦表面裂纹检测[J]. 激光与光电子学进展, 2019, 56(21): 211003.
- [16] Zhou P, Li Q, Zeng S G, et al. Surface crack detection method for ceramic tile based on hessian matrix multiscale filtering[J]. Laser & Optoelectronics Progress, 2020, 57(10): 101022.
 周飘,李强,曾曙光,等.基于多尺度Hessian矩阵 滤波的陶瓷瓦表面裂纹检测方法[J].激光与光电子 学进展, 2020, 57(10): 101022.
- [17] Kim Y, Koh Y J, Lee C, et al. Dark image enhancement based on pairwise target contrast and multiscale detail boosting[C]//2015 IEEE International Conference on Image Processing (ICIP), September 27-30, 2015, Quebec City, QC, Canada. New York: IEEE Press, 2015: 1404-1408.
- [18] Dantas D O, de Souza Oliveira D, Leal H D P. Blood vessels extraction using Fuzzy Mathematical Morphology[C]//2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), March 5-9, 2017, New Orleans, LA, USA. New York: IEEE Press, 2017: 914-918.
- [19] Carrazza S, Forte S, Kassabov Z, et al. An unbiased Hessian representation for Monte Carlo PDFs[J]. The European Physical Journal C, Particles and Fields, 2015, 75(8): 369.
- [20] Wang L, Meng Q M, Guo Y X, et al. Measurement of coronary artery diameter on DSA image based on Hessian matrix[J]. Chinese Journal of Medical Physics, 2019, 36(10): 1182-1186.

王力, 孟庆民, 郭永新, 等. 基于 Hessian 矩阵的 DSA 图像冠状动脉直径的测量[J]. 中国医学物理学 杂志, 2019, 36(10): 1182-1186.

- [21] Jia D Q, Zhuang X H. Learning-based algorithms for vessel tracking: a review[J]. Computerized Medical Imaging and Graphics, 2021, 89: 101840.
- [22] Gong J C, Zhao S Y, Wang Y J. Research progress on deep learning-based medical image segmentation
 [J]. Chinese Journal of Medical Physics, 2019, 36
 (4): 420-424.
 宫进昌,赵尚义,王远军.基于深度学习的医学图像 分割研究进展[J].中国医学物理学杂志, 2019, 36
 (4): 420-424.
- [23] Yang L, Yang G, Yin Y, et al. Sliding windowbased region of interest extraction for finger vein images[J]. Sensors, 2013, 13(3): 3799-3815.
- [24] Li G K, Cheng X Y, Zhou Y, et al. Intima and adventitia segmentation of the common carotid artery in ultrasound images based on active contour model [J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2010, 38(6): 75-79.
 李国宽,程新耀,周渊,等.超声图像中颈动脉血管

内外膜分割[J]. 华中科技大学学报(自然科学版), 2010, 38(6): 75-79.

- [25] Loizou C P, Pattichis C S, Pantziaris M, et al. Snakes based segmentation of the common carotid artery intima media[J]. Medical & Biological Engineering & Computing, 2007, 45(1): 35-49.
- [26] Loizou C P, Pattichis C S, Pantziaris M, et al. Quality evaluation of ultrasound imaging in the carotid artery based on normalization and speckle reduction filtering[J]. Medical and Biological Engineering and Computing, 2006, 44(5): 414-426.
- [27] Townsend J T. Theoretical analysis of an alphabetic confusion matrix[J]. Perception & Psychophysics, 1971, 9(1): 40-50.